

# In-Situ Persulfate Oxidation of Soil Contaminated with Hydraulic Oil at a New Jersey Site

Kayla Turner<sup>1</sup>; Amine Dahmani<sup>2</sup>, PhD





### Background

Non-aqueous phase liquids (NAPLs) such as hydraulic oils are frequent sources of contamination in the soil subsurface. The immiscibility of these organic contaminants with water results in pore space entrapment within the soil matrix and persistence of the pollution over long periods of time. This study investigates whether alkaline-activated persulfate oxidation treatment sufficiently lowers the contamination levels below the New Jersey Extractable Petroleum Hydrocarbons (EPH) regulatory criteria for a site contaminated with hydraulic oil.

### Objectives

#### Batch Reactor Tests

- Evaluate if surfactant pre-flush improves persulfate performance
- Determine optimal persulfate dosage

#### Field Application

 Decrease contaminant levels below EPH limit of 17,000 mg/kg (Category 2 EPH petroleum products) for the 50 by 60 ft treatment area

#### Methods

#### **Batch Reactor Tests**



#### Field Application

## Injection Events

• 3 injection galleries

• 3 ft BGS trenches to target 3-6 ft BGS

### Analysis

ORP, DO, pH measured
EPH, sodium, sulfate, &

persulfate determined

#### Methods





Figure 1: Injection Gallery

Figure 2: Injection Manifold

#### **Batch Reactor - Results**

Table 1: Bench Scale Testing Results

| Sample ID                 | EPH, mg/kg | % EPH Reduction |
|---------------------------|------------|-----------------|
| C-M-2 (control)           | 1100       | _               |
| M-PERS-S (40% g/kg pers.) | 370        | 66%             |
| M-PERS-W                  | 1.5        | _               |
| M-PERS20-S                | 870        | 20.90%          |
| M-PERS20-W                | 2.3        | _               |
| M-PERS60-S                | 970        | 11.80%          |
| M-PERS60-W                | 2.4        | -               |
| M-PERS80-S                | 950        | 13.60%          |
| M-PERS80-W                | 1.9        | -               |
| M-TASK-PERS-1-S           | 670        | 39%             |
| M-TASK-PERS-1-W           | 45         | -               |
| M-TASK-PERS-2-S           | 570        | 48%             |
| M-TASK-PERS-2-W           | 44         | -               |

### Batch Reactor - Conclusions

- TASK surfactant pre-flush does not enhance EPH reduction
- Very low EPH concentration in water phase → persulfate oxidation effective
- 40 g/kg soil best persulfate dosage

### Field Application - Results

Table 2: 150 g/L of Oxidant Injected in Vadose Zone

| Historical Avg, mg/kg | Post-Ox Avg, mg/kg |
|-----------------------|--------------------|
| 43,250                | 11,460 (-73.5%)    |

Table 3: Remaining Exceedances

| Sample Label     | EPH, mg/kg | % Exceedance |
|------------------|------------|--------------|
| SB-2 (6'-6.5')   | 21,700     | 27.65%       |
| SB-3 (4.5'-4.5') | 17,700     | 4.12%        |

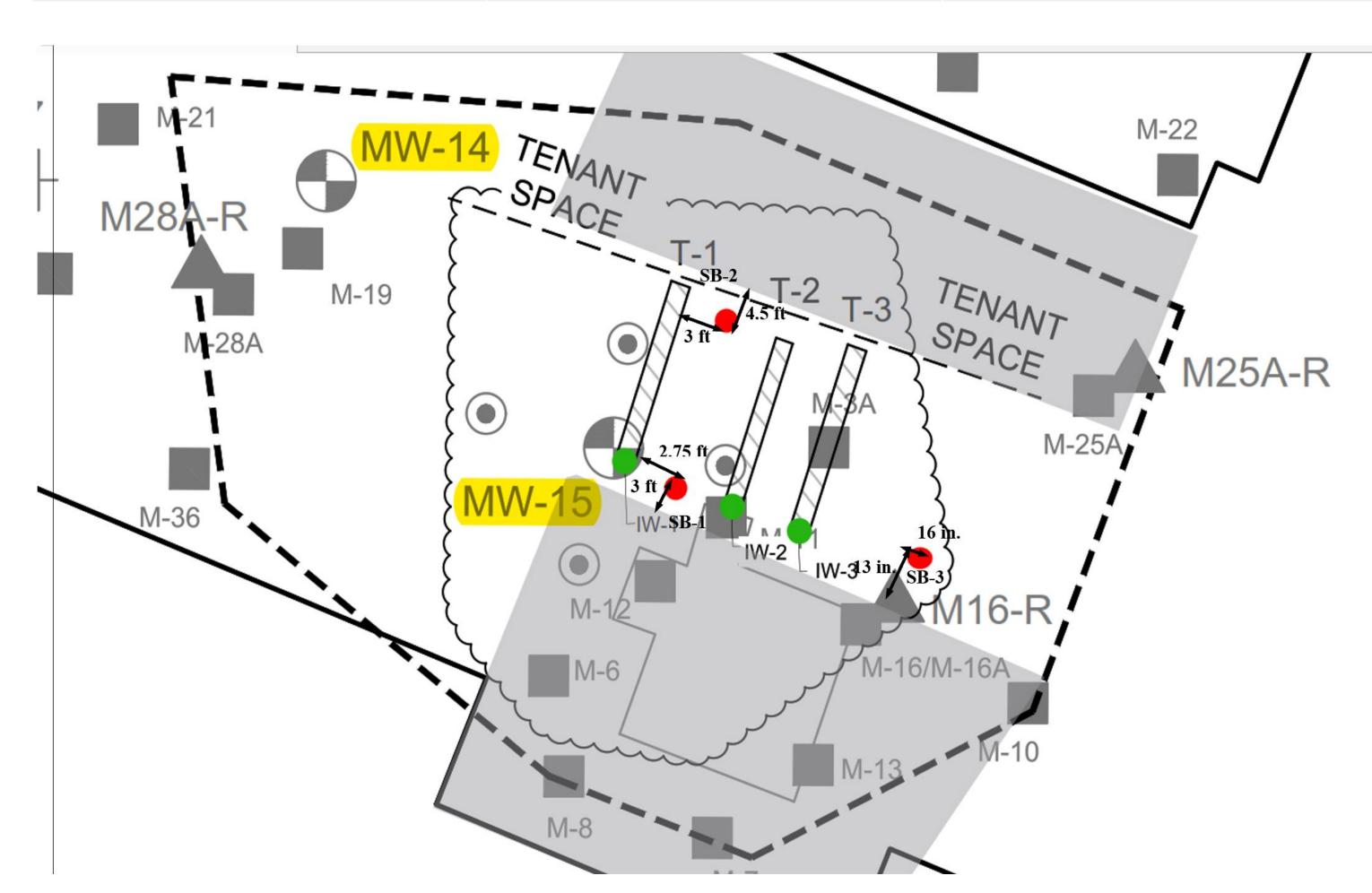



Figure 3: Site Map

# Field Application - Conclusions

## Overall EPH Reduction in Soil: 73.5%

- Alkaline activated persulfate treatment was effective in reducing hydraulic oil concentration (EPH)
- Additional treatment is ongoing