Environmental Engineering Laboratory

UNIVERSITY OF CONNECTICUT Dept. of Civil & Environmental Engineering

ENVE 3200 Spring 2017

Lecture:	Tuesday 11:00	-12:50 (CAST 201)	Lab:	Thursday 11-2, 2-5 (CAST 114/112)
Instructors:	Labs 0-5:	Prof. Alexander G. Agrio	s, CAST	310, 486-1350, <u>agrios@uconn.edu</u>
	Lab 6 onward:	Prof. Baikun Li, CAST 31	2, 486-2	2339, <u>baikun.li@uconn.edu</u>
Office Hours:	Wed 11:00 am	- 1:00 pm, CAST 310 (Prof.	. Agrios))

Teaching Assistants:

Kevin (Yaguang) Du, yaguang.du@uconn.edu, TA

Undegraduate assistants: Stephanie Hubli (11-2), Danny Ross (2-5)

Course Texts

Mandatory

 Laboratory Notebook – any version at the UConn Bookstore <u>that includes carbon copy pages</u>. Instructions for each lab will be provided on HuskyCT.

Supplementary Texts (Available at Babbidge Library)

- Sawyer, C.N., P.L. McCarty, G.F. Parkin (2003) <u>Chemistry for Environmental Engineering and Science</u>. 5th Edition, McGraw-Hill, 752 pp.
- Robinson, M.S., Stoller, F.L., Costanza-Robinson, M.S., Jones, J.K. (2008) <u>Write Like a Chemist</u>. Oxford, New York.
- 3. Skoog, D. A.; West, D. M.; Holler, F. J. <u>Fundamentals of Analytical Chemistry</u>; 7 ed.; Saunders College Publishing: New York, NY, 1996, pp 870.
- Reynolds, T. D.; Richards, P. A. <u>Unit Operations and Processes in Environmental Engineering</u>; 2 ed.; PWS Publishing Co.: Boston, MA, 1996, pp 798.
- Jenkins, D.; Snoeyink, V. L.; Ferguson, J. F.; Leckie, J. O. <u>Water Chemistry, Laboratory Manual</u>; 3 ed.; John Wiley & Sons: New York, NY, 1980.
- 6. Snoeyink, V. L.; Jenkins, D. Water Chemistry; 1 ed.; John Wiley & Sons: New York, NY, 1980, pp 463.
- 7. Droste, R. L. <u>Theory and Practice of Water and Wastewater Treatment</u>; John Wiley & Sons, Inc.: New York, NY, 1997, pp 800.

- 8. American Water Works Association. <u>Water Quality and Treatment</u>; 4 ed.; Mc-Graw-Hill, Inc.: New York, NY, 1999, pp 1194.
- <u>Standard Methods for the Examination of Water and Wastewater</u>; 19 ed.; Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E., Ed.; American Public Health Association: Washington, DC, 1995.
- Huckin, T. N. and L. A. Olsen. 1991. <u>Technical writing and professional communication</u>. McGraw-Hill, Inc., New York, NY.
- Kanare, H.M. (1985) <u>Writing the Laboratory Notebook</u>. American Chemical Society, Washington, D.C. *especially Ch. 5 & 6*.

Grading:	Formal Lab Reports: Individual (2)	20%
	Informal Lab Reports: Individual (7)	50%
	Final Project: Group (Report/Presentation)	15/5%
	Pre-lab and Quizzes	10%

Lab Reports are due at the BEGINNING of lab session

No late assignments accepted!!!

- Lab Notebooks: The laboratory notebook is an essential document for any experimental work, used to record ideas, plans, methodology/procedure in addition to data. Notes should be clear, concise, and <u>neatly</u> <u>recorded</u> (see Kanare (1985), Writing the Laboratory Notebook (ACS), as a guide). A significant part of the laboratory write-up should occur <u>before</u> the lab period including the title, purpose, materials and methods (see Report Guide handout). Your name must be on every page of your notebook.
- Lab Reports: The report-writing efforts will involve a buildup to complete formal laboratory reports. We will begin with informal reports focusing on individual sections and ultimately get to the synthesis of a complete report by combining these individual sections into a well-written, flowing report with all sections linked together smoothly. Long formal laboratory reports are required for select experiments, including the Final Project. All reports are <u>due at the beginning of the laboratory period one week after the completion of the laboratory experiment</u> as specified in the table below. The formal lab report should cover: Introduction (Relevant Theory with Objectives stated), Methodology, Results, Discussion, References, Tables/Figures and necessary Appendices as described in more detail in the *Report Guide* handout. Reports will be graded on both technical content and editorial quality.

Long formal lab reports should be concise and well written (10-15 pages, double-spaced, font size = 12). *Tables and figures should be placed <u>within the report</u> and referenced as e.g. (Table 1). Two labs, <i>BOD*

and Chlorination, will be formal reports. In addition, the project will be a team written formal lab report with shared writing responsibility.

The remaining laboratory reports will be informal reports. Informal reports will emphasize one aspect of formal report writing: One section of the informal report specified by the instructor will be composed as required for a formal report, whereas other sections can be completed in bullet form. A FULL data analysis and presentation must be performed for all reports! A portion of the informal lab report grade will be assigned for high-quality data presentation and overall report organization.

Overall Course Objectives

At the completion of this course you will be able to:

- 1. Apply fundamental and quantitative knowledge about environmental chemistry to interpret and solve water, soil and air quality engineering problems.
- 2. Apply basic statistical techniques to analyze and interpret experimental data.
- 3. Design, conduct, analyze and interpret lab- and pilot-scale experiments to estimate kinetic and stoichiometric information for water quality engineering unit processes.
- 4. Summarize, interpret, and present experimental information in formal reports and via oral presentations.
- 5. Critique technical writing and provide feedback to others.
- 6. Work effectively as a team member and team leader to solve water quality engineering tasks.

Syllabus ENVE3200

4 of 6

Spring 2017

Spring 2016 ENVE 3200

Course Calendar

LECTURE	ТОРІС	READING: SAWYER (Chapter or sections unless noted)	READING: ROBINSON (Chapters or sections unless noted)	LAB	READING: Lab Manual	LABORATORY EXPERIMENT	DUE
Jan 17	Introduction, Overview; Review Report: Data Presentation	1, 9, 10	1, 16	Jan 19	Lab 0	Excel Stats lab in CAST117 11-2 pm (group 1) 2-5 pm (group 2) (Lab 0)	Pre-lab 0
Jan 24	Data Analysis; Review Report: <i>Overview; Language</i>	1, 2 , 9, 10 , 11.2 , 11.3;11.4	2, p. 583, pp. 601-658	Jan 26	Lab 1	Lab familiarization/Safety Gravimetric Data lab (Lab 1)	Lab 0 (excel template), Pre- lab 1
Jan 31	Water Quality Parameters Report: <i>Methods</i>	13, 26, 34	3	Feb 2	Lab 2	Total/Dissolved Solids (Lab 2)	Lab 1 (informal), Pre- lab 2
Feb 7	Alkalinity; titration; Coagulation/flocc'n Report: <i>Results</i>	4, 12.3, 16, 18, 15.1, 7	4	Feb 9	Lab 3 OR Lab 4	Alkalinity/Titration (Lab 3) OR Coagulation and Flocculation (Lab 4)	Lab 2 (informal) + <i>Methods</i> , Pre- lab 3/4
Feb 14	Adsorption Isotherms Spectrophotometry Report: <i>Discussion</i>	3.12, 12.2 pp.294-296	5	Feb 16	Lab 3 OR Lab 4	Alkalinity/Titration (Lab 3) OR Coagulation and Flocculation (Lab 4)	

Syllabus ENVE3200		5 of 6			Spring 2017		
Feb 21	Adsorption: Set-Up (Lab 5) In 114 (Pre-lab 5 due)	Lab 5		Feb 23	Lab 5	Adsorption (Lab 5)	Lab 3/Lab 4 (informal) +Results & Discussion
Feb 28	Biological Treatment; Project Hypothesis Report: Introduction	23 , 22	18	Mar 2	Lab 6	BOD (Lab 6)	Lab 5 (informal) + <i>Introduction</i> , Pre-lab 6
Mar 7	Finish BOD Lab (in 114);	p.25-26, 3.8, 5.34,12.4, 33.4	6	Mar 9			Lab 6 (formal)

SPRING BREAK MARCH 12-18

Mar 21	Lab 6 Critique <u>PROJECT DESIGN</u>		Mar 23		Project Design	
Mar 28	Chlorination	2.7, 3.10, 4.8, 20	Mar 30	Lab 7	Chlorination (Lab 7)	Pre-lab 7

Syllabus ENVE3200		6 of 6			Spring 2017			
Apr 4	<u>FINAL PROJECT</u> : Experiment			Apr 6		FINAL PROJECT: Experiment	Lab 7 (formal)	
Apr 11	Presentation: Know Your Audience <u>FINAL PROJECT</u> : Experiment		рр. 584-600	Apr 13		<u>FINAL PROJECT</u> : Experiment		
Apr 18	<u>FINAL PROJECT</u> : Experiment			Apr 20		PROJECT PRESENTATIONS Location TBD		
Apr 25	Air Pollution/ Atmos. Nitrogen	25.2	7	Apr 27	Lab 8	NO _x in Car Exhaust (Lab 8)	Lab 8 (informal)	
May 2				May 4		FINAL PROJECT REPORTS	Project Reports (group formal) +abstract	