Syllabus for Engineering Geology CE/ENVE 3530 and GSCI 3710

Instructor: Jonathon Drasdis Department: Civil and Environmental Engineering

Phone number: 486-3211 e-mail: drasdis@ engr.uconn.edu

Lecture: Tuesday, and Thursday, 9:30-10:45 am, Room: Castleman, Room 201

Textbook: Geology for Engineers & Environmental Scientists, by Kehew, 3rd ed. Prentice Hall

Description: Review of the origin, interior and crustal materials of Earth; the natural processes which have built Earth, deformed and torn down the crust throughout geologic time; the environmental relationships between humans and geologic processes and resources stressing application to engineering. Designed for civil and environmental engineering students, but applicable to environmental science. Strong emphasis on geotechnology and the environment.

Grades: Your grade will be based on the mid-term (20%) and final exams (25%), homework problems (25%) and a class project (20%). Exams will reflect your comprehension of materials covered in lecture, text readings and the homeworks. There is a subjective component of your grade (10%) pertaining to your class involvement, participation and interaction during the course.

Important Dates: March 1st Exam I (date tentative)

March 8th Spring Break (March 7th – 13th)

March 16th Submit detailed project outline (1-2 pgs)

April 5th Exam II (date tentative)
May 6th Final Exam (date tentative)

Topics covered in class: a) Intro, Geologic Time and Plate Tectonics b) Earth's Materials:	Readings 1-74
1) Minerals and the Rock Cycle 2) Igneous Rocks, Volcanoes 3) Sedimentary Rocks and Processes 4) Metamorphic Rocks and Processes 5) Mechanics of Rock Materials, RQD 6) Stratigraphy, Geologic & Topo Maps 7) Weathering and Erosion 8) Soils (mechanics highlights); Wetland; Clays	74-105 106-153 154-196 197-214 214-250 173-182 319-347 348-394
c) Geological Processes and Associated Engineering Problems:	
 Tectonic processes and Structural Geology Earthquakes Slope processes Stream processes Coastal processes Groundwater Glacial Geology 	251-271 272-318 500-543 544-595 596-638 396-450 639-673

Additional Topics: Site Investigation, engineering properties of rocks, case studies, etc.

Notes:* the class project will entail an engineering case study where the site specific geology controlled one of the following: 1) the nature or design of an engineered project, 2) failure of a engineered (designed) structure, or 3) environmental hazard (or potential hazard) exposed due to the reworking of earth materials.